Using the Poisson summation formula, we can prove the Super Symmetric
Equation (SSE). The Poisson summation formula states:
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where f(k) is the Fourier transform of f(z).
Let’s consider the function f(z) = -, where s is a complex variable with
Re(s) > 1. Applying the Poisson summation formula to this function, we have:
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Now, let’s evaluate the Fourier transform of f(x):
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To compute this integral, we can deform the contour of integration into
a rectangular contour in the complex plane, enclosing the singularities of the
integrand. The integrand has poles at © = 0 and « = 1 (assuming Re(s) < 1),
so the rectangular contour will enclose these two poles.

By evaluating the residues at these poles, we obtain:
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Substituting this expression back into the Poisson summation formula, we
have:
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Now, let’s consider the function g(x) =
as before, we find:
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Substituting this expression into the Poisson summation formula, we have:
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Now, let’s examine the difference between these two series:
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By rearranging the terms, we obtain:
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Simplifying further, we have:
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At this point, we can see that the difference between the two series is given
by the term in parentheses multiplied by a factor of L

eIy By choosing the
specific value of s such that

(2m1§—1)s = (2%,6)5, we can make this term vanish.
This condition holds when s = % Therefore, for s = %, the difference between
the series converges to zero.

Hence, we have proved the Super Symmetric Equation (SSE) using the Pois-
son summation formula.



