Proof

Let $\zeta(s)$ be the analytic continuation of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, and let $\zeta\left(1-s^{*}\right)$ be the analytic continuation of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$.

We want to show that if $\zeta(s)=\zeta\left(1-s^{*}\right)$, then the difference between the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converges to zero in the critical strip, and vice versa.

Assume $\zeta(s)=\zeta\left(1-s^{*}\right)$. By the identity theorem for analytic functions, $\zeta(s)$ and $\zeta\left(1-s^{*}\right)$ are identical on a region that contains the line $\operatorname{Re}(s)=\frac{1}{2}$. Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converge absolutely for $\operatorname{Re}(s)>1$, and are analytic in this region, they must be identical in this region. Therefore, the difference between the series,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}-\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}
$$

converges to 0 as s approaches any point on the line $\operatorname{Re}(s)=\frac{1}{2}$.
Conversely, assume that the difference between the series converges to 0 as s approaches any point on the line $\operatorname{Re}(s)=\frac{1}{2}$. Let $f(s)=\zeta(s)-\zeta\left(1-s^{*}\right)$. Then $f(s)$ is an analytic function on the half-plane $\operatorname{Re}(s)>\frac{1}{2}$. We want to show that $f(s)=0$ for all s in this half-plane.

By the assumption, the limit of $f(s)$ as s approaches any point on the line $\operatorname{Re}(s)=\frac{1}{2}$ is 0 . Since the limit of an analytic function is itself analytic, $f(s)$ is analytic on the half-plane $\operatorname{Re}(s) \geq \frac{1}{2}$. By the identity theorem, if $f(s)=0$ for an infinite set of points in this half-plane with a limit point, then $f(s)=0$ for all s in the half-plane. Therefore, it suffices to show that the set of zeros of $f(s)$ has a limit point in the half-plane $\operatorname{Re}(s) \geq \frac{1}{2}$.

Let $z=\frac{1}{2}+i t$, where t is a real number. Then

$$
f(z)=\zeta\left(\frac{1}{2}+i t\right)-\zeta\left(\frac{1}{2}-i t\right)
$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges absolutely for $\operatorname{Re}(s)>1$, the functions $\zeta(s)$ and $\zeta\left(1-s^{*}\right)$ are well-defined and analytic in the half-plane $\operatorname{Re}(s)>1$. Therefore, $f(z)$ is well-defined and analytic in the strip $\frac{1}{2} \leq \operatorname{Re}(s) \leq 1$.

By the assumption, $\lim _{s \rightarrow z} f(s)=0$. This means that for any $\epsilon>0$, there exists a $\delta>0$ such that $|f(s)|<\epsilon$ whenever $0<|s-z|<\delta$. Since the function $f(s)$ is analytic in the strip $\frac{1}{2} \leq \operatorname{Re}(s) \leq 1$, the maximum modulus principle implies that $|f(s)|$ attains its maximum on the boundary of this strip. Therefore, we can choose δ small enough so that $|f(s)|<\epsilon$ for all s on the line segments $\operatorname{Re}(s)=\frac{1}{2}$ and $|t|<\delta$. This shows that the zeros of $f(s)$ have a limit point on the line $\operatorname{Re}(s)=\frac{1}{2}$.

By the identity theorem, $f(s)=0$ for all s in the half-plane $\operatorname{Re}(s) \geq \frac{1}{2}$. Hence, $\zeta(s)=\zeta\left(1-s^{*}\right)$.

Therefore, the difference between the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converges to 0 in the critical strip if and only if $\zeta(s)=\zeta\left(1-s^{*}\right)$.

