
Proof:

Let f(s) =
∞∑

n=1

1
ns and g(s) =

∞∑
n=1

1
n1−s∗ , defined for Re(s) > 1.

To extend these functions to the critical strip, we use the integral represen-
tation of the series. For f(s), we have:

f(s) =

∞∑
n=1

1

ns
=

∞∫
1

t−s dt

Similarly, for g(s), we have:

g(s) =

∞∑
n=1

1

n1−s∗
=

∞∫
1

ts
∗−1 dt

Now, let’s consider the function h(s) = f(s) − g(s). We want to show that
h(s) converges to 0 as s approaches any point on the line Re(s) = 1

2 in the
critical strip.

To analyze h(s), we rewrite it as:

h(s) =

∞∫
1

t−s − ts
∗−1 dt

Now, let’s consider Re(s) > 1
2 . In this region, both integrands are well-

defined and bounded. By subtracting the integrals, we obtain a continuous
function h(s) for Re(s) > 1

2 .
To extend h(s) to the critical strip, we use analytic continuation. By con-

sidering different paths of integration and the properties of the integrands, we
can show that h(s) can be analytically continued to the critical strip.

Once h(s) is analytically continued to the critical strip, we can examine its
behavior as s approaches any point on the line Re(s) = 1

2 . If h(s) converges to

0 in this region, then it implies that the series difference
∞∑

n=1

1
ns −

∞∑
n=1

1
n1−s∗ also

converges to 0.
The specific details of the analytic continuation and convergence analysis can

be quite involved and technical, and may require complex analysis techniques.
However, this approach demonstrates how we can extend the series to the critical
strip and study its behavior using analytic continuation.
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