Super Symmetric Equation

April 18, 2023

Let $\zeta(s)$ be the analytic continuation of the sum of $1 / n^{s}$ from $n=1$ to ∞, and let $\zeta\left(1-s^{*}\right)$ be the analytic continuation of the sum of $1 / n^{1-s^{*}}$ from $n=1$ to ∞.

Assume $\zeta(s)=\zeta\left(1-s^{*}\right)$. By the identity theorem for analytic functions, $\zeta(s)$ and $\zeta\left(1-s^{*}\right)$ are identical on a region that contains the line $\operatorname{Re}(s)=1 / 2$. Since the series $\sum_{n=1}^{\infty} 1 / n^{s}$ and $\sum_{n=1}^{\infty} 1 / n^{1-s^{*}}$ converge absolutely for $\operatorname{Re}(s)>1$, and are analytic in this region, they must be identical in this region. Therefore, the difference between the series, i.e.,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}-\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}},
$$

converges to 0 as s approaches any point on the line $\operatorname{Re}(s)=1 / 2$.
Conversely, assume that the difference between the series converges to 0 as s approaches any point on the line $\operatorname{Re}(s)=1 / 2$. Let $f(s)=\zeta(s)-\zeta\left(1-s^{*}\right)$. Then $f(s)$ is an analytic function on the half-plane $\operatorname{Re}(s)>1 / 2$. We want to show that $f(s)=0$ for all s in this half-plane.

By the assumption, the limit of $f(s)$ as s approaches any point on the line $\operatorname{Re}(s)=1 / 2$ is 0 . Since the limit of an analytic function is itself analytic, $f(s)$ is analytic on the half-plane $\operatorname{Re}(s) \geq 1 / 2$. By the identity theorem, if $f(s)=0$ for an infinite set of points in this half-plane with a limit point, then $f(s)=0$ for all s in the half-plane. Therefore, it suffices to show that the set of zeros of $f(s)$ has a limit point in the half-plane $\operatorname{Re}(s) \geq 1 / 2$.

Let $z=1 / 2+i t$, where t is a real number. Then

$$
f(z)=\zeta(z)-\zeta\left(1-z^{*}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n^{z}}-\frac{1}{n^{1-z^{*}}}\right) .
$$

Using the fact that $\left|1 / n^{z}-1 / n^{1-z^{*}}\right| \leq 2 / n^{1 / 2}$, we have

$$
|f(z)| \leq \sum_{n=1}^{\infty} \frac{2}{n^{1 / 2}}=2 \zeta(1 / 2)<\infty
$$

Therefore, by the Cauchy-Schwarz inequality, we have

$$
|f(z+i h)| \leq \sqrt{2 \zeta(1 / 2)} \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^{1+h}} \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^{1-h}}}, \text {, }, \text {. }}
$$

where h is a small positive real number. Since both $\sum_{n=1}^{\infty} 1 / n^{1+h}$ and $\sum_{n=1}^{\infty} 1 / n^{1-h}$ converge for $h>0$, the above inequality shows that $f(z) \rightarrow 0$ as $h \rightarrow 0$. Therefore, the set of zeros of $f(s)$ has a limit point at z in the half-plane $\operatorname{Re}(s) \geq 1$.

