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Let ((s) be the analytic continuation of the sum of 1/n° from n =1 to oo, and let (1 — s*) be the
analytic continuation of the sum of 1/n'~*" from n = 1 to occ.

Assume ((s) = ¢(1 — s*). By the identity theorem for analytic functions, ((s) and ¢(1 — s*) are
identical on a region that contains the line Re(s) = 1/2. Since the series >_00 | 1/n® and > o0 | 1/n!~*"
converge absolutely for Re(s) > 1, and are analytic in this region, they must be identical in this region.
Therefore, the difference between the series, i.e.,
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converges to 0 as s approaches any point on the line Re(s) = 1/2.

Conversely, assume that the difference between the series converges to 0 as s approaches any point
on the line Re(s) = 1/2. Let f(s) = ((s)—¢(1—s*). Then f(s) is an analytic function on the half-plane
Re(s) > 1/2. We want to show that f(s) = 0 for all s in this half-plane.

By the assumption, the limit of f(s) as s approaches any point on the line Re(s) = 1/2 is 0. Since
the limit of an analytic function is itself analytic, f(s) is analytic on the half-plane Re(s) > 1/2. By
the identity theorem, if f(s) = 0 for an infinite set of points in this half-plane with a limit point, then
f(s) = 0 for all s in the half-plane. Therefore, it suffices to show that the set of zeros of f(s) has a
limit point in the half-plane Re(s) > 1/2.

Let z = 1/2 + it, where t is a real number. Then

fa=c-c-2=3 (-t ).
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Using the fact that |1/n* —1/n'~%"| < 2/n'/2, we have
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Therefore, by the Cauchy-Schwarz inequality, we have
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where h is a small positive real number. Since both >°°7  1/n!*" and 3°°7  1/n'~" converge for
h > 0, the above inequality shows that f(z) — 0 as h — 0. Therefore, the set of zeros of f(s) has a
limit point at z in the half-plane Re(s) > 1.



