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Let ζ(s) be the analytic continuation of the sum of 1/ns from n = 1 to ∞, and let ζ(1− s∗) be the
analytic continuation of the sum of 1/n1−s∗ from n = 1 to ∞.

Assume ζ(s) = ζ(1 − s∗). By the identity theorem for analytic functions, ζ(s) and ζ(1 − s∗) are
identical on a region that contains the line Re(s) = 1/2. Since the series

∑∞
n=1 1/n

s and
∑∞

n=1 1/n
1−s∗

converge absolutely for Re(s) > 1, and are analytic in this region, they must be identical in this region.
Therefore, the difference between the series, i.e.,

∞∑
n=1

1

ns
−

∞∑
n=1

1

n1−s∗
,

converges to 0 as s approaches any point on the line Re(s) = 1/2.
Conversely, assume that the difference between the series converges to 0 as s approaches any point

on the line Re(s) = 1/2. Let f(s) = ζ(s)−ζ(1−s∗). Then f(s) is an analytic function on the half-plane
Re(s) > 1/2. We want to show that f(s) = 0 for all s in this half-plane.

By the assumption, the limit of f(s) as s approaches any point on the line Re(s) = 1/2 is 0. Since
the limit of an analytic function is itself analytic, f(s) is analytic on the half-plane Re(s) ≥ 1/2. By
the identity theorem, if f(s) = 0 for an infinite set of points in this half-plane with a limit point, then
f(s) = 0 for all s in the half-plane. Therefore, it suffices to show that the set of zeros of f(s) has a
limit point in the half-plane Re(s) ≥ 1/2.

Let z = 1/2 + it, where t is a real number. Then

f(z) = ζ(z)− ζ(1− z∗) =

∞∑
n=1

(
1

nz
− 1

n1−z∗

)
.

Using the fact that |1/nz − 1/n1−z∗ | ≤ 2/n1/2, we have

|f(z)| ≤
∞∑

n=1

2

n1/2
= 2ζ(1/2) < ∞.

Therefore, by the Cauchy-Schwarz inequality, we have

|f(z + ih)| ≤
√

2ζ(1/2)

√√√√ ∞∑
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√√√√ ∞∑
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,

where h is a small positive real number. Since both
∑∞

n=1 1/n
1+h and

∑∞
n=1 1/n

1−h converge for
h > 0, the above inequality shows that f(z) → 0 as h → 0. Therefore, the set of zeros of f(s) has a
limit point at z in the half-plane Re(s) ≥ 1.
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