Assume that $\zeta(s)=\zeta\left(1-s^{*}\right)$ for some complex number $s$. We want to show that the difference between the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converges to zero.

Consider the function $f(z)=\zeta(z)-\zeta\left(1-z^{*}\right)$ and define a contour $C$ in the complex plane. The contour starts at $-i R$, goes along the straight line to $i R$, makes a small semicircular detour in the upper half-plane to avoid the pole at $z=1$, and returns along the straight line from $i R$ to $-i R$.

By the residue theorem, we have

$$
\oint_{C} f(z) d z=2 \pi i \operatorname{Res}[f, 1] .
$$

Since $f(z)$ is analytic except for the poles at $z=0$ and $z=1$, we can evaluate the integral along the contour $C$ as

$$
\oint_{C} f(z) d z=\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(z) d z+\int_{R}^{-R} f(x) d x
$$

where $C_{R}$ denotes the semicircular detour.
As $R$ tends to infinity, the integral along the detour $C_{R}$ vanishes because $f(z)$ is bounded. Thus, we have

$$
\lim _{R \rightarrow \infty}\left(\int_{-R}^{R} f(x) d x+\int_{R}^{-R} f(x) d x\right)=0
$$

Simplifying, we get

$$
\int_{-\infty}^{\infty} f(x) d x+\int_{\infty}^{-\infty} f(x) d x=0
$$

Since $f(z)=\zeta(z)-\zeta\left(1-z^{*}\right)$ and $f(z)=0$, we have $\zeta(z)=\zeta\left(1-z^{*}\right)$ for all real numbers $z$.

Now, let's consider the difference between the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ :

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n^{s}}-\frac{1}{n^{1-s^{*}}}\right)=\sum_{n=1}^{\infty} \frac{n^{s^{*}}-1}{n\left(n^{s^{*}}\right)}=\sum_{n=1}^{\infty} \frac{a_{n}}{n}
$$

where $a_{n}=\frac{n^{s^{*}}-1}{n\left(n^{s^{*}}\right)}$.
Since $\zeta(s)=\zeta\left(1-s^{*}\right)$, we know that $\zeta(s)$ converges for $\operatorname{Re}(s)>\frac{1}{2}$ Now, wecanexpressa ${ }_{n}$ as follows:

$$
a_{n}=\frac{n^{s^{*}}-1}{n\left(n^{s^{*}}\right)}=\frac{1}{n}-\frac{1}{n^{1-s^{*}}} .
$$

Since $\zeta(s)$ converges for $\operatorname{Re}(s)>\frac{1}{2}$, we have that $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges absolutely.

Similarly, $\zeta\left(1-s^{*}\right)$ converges for $\operatorname{Re}\left(1-s^{*}\right)>\frac{1}{2}$, which is equivalent to $\operatorname{Re}\left(s^{*}\right)<\frac{1}{2}$. Hence, $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converges absolutely.

Therefore, for any fixed $\operatorname{Re}(s)>\frac{1}{2}$, both series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converge absolutely.

Since the terms $a_{n}=\frac{1}{n}-\frac{1}{n^{1-s^{*}}}$ in the series $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ approach zero as $n$ goes to infinity, we conclude that the series $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges to zero.

Therefore, the difference between the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ converges to zero.

Conversely, if the difference between the series converges to zero, we can reverse the steps of the proof and deduce that $\zeta(s)=\zeta\left(1-s^{*}\right)$ for the given complex number $s$.

Hence, we have proven that if $\zeta(s)=\zeta\left(1-s^{*}\right)$, then the difference between the sums of the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{1-s^{*}}}$ must converge to zero. The converse is also true.

This completes the proof.

