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Necessary and sufficient conditions for uniqueness of analytic continuation 
are investigated for a system of m > 1 first-order linear homogeneous partial 
differential equations in one unknown, with complex-valued srn coefficients, 
in some connected open subset of [Wk, k > 2. The type of system considered 
is one for which there exists a real k-dimensional, V*, connected C-R sub- 
manifold Mk of a=%, for k, n > 2, such that the system may be identified with 
the induced Cauchy-Riemann operators on Mk. The question of uniqueness 
of analytic continuation for a system of partial differential equations is thus 
transformed to the question of uniqueness of analytic continuation for C-R 
functions on the manifold Mk‘ C Cn. Under the assumption that the Levi 
algebra of ML has constant dimension, it is shown that if the excess dimension 
of this algebra is maximal at every point, then MK has the property of uniqueness 
of analytic continuation for its C-R functions. Conversely, under certain 
mild conditions, it is shown that if M” has the property of uniqueness of 
analytic continuation for all Km C-R functions, and if the Levi algebra has con- 
stant dimension on all of Mk‘, then the excess dimension must be maximal at 
every point of M”. 

1. INTRODUCTION 

The problems considered in this paper arise out of both the fields of partial 
differential equations and several complex variables. In terms of partial 
differential equations we are interested in a system of m first-order linear 
homogeneous equations in one unknown, m > 1, with complex-valued G9 
coefficients in [w”, k > 2. We seek conditions under which a GP solution on 
some connected set A C lP, which is zero on an arbitrary subset B with 
B C A, has the property that it is identically zero on all of A. This is the study 
of uniqueness of analytic continuation for partial differential equations. 
Since our systems are linear, we have as a consequence that two %P solutions 
ul and ua to a system with a P right-hand side which have the property that 
they agree on some open subset B must agree on all of A. 

We will assume that our system (in Rk) has the following property. There 
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exists a real k-dimensional connected, grn submanifold Mk (without boundary) 
of some Cn, k, n >, 2, such that the system can be identified with the induced 
Cauchy-Riemann operators on Mk from F. Nirenberg [13, 141 has shown 
that there is a partial differential equation in three variables with V” coeffi- 
cients for which there does not exist an M3 C C2 such that the partial differen- 
tial equation is the Cauchy-Riemann operator on M3. However, if our system 
has real-analytic coefficients or if it satisfies certain other weaker conditions 
(see [l] for some examples), then we can find the Mk C Cm we desire. It should 
be noted that Nirenberg’s example in [ 141 does exhibit uniqueness of analytic 
continuation since all solutions to his partial differential equation are constants. 

Therefore, we can change the question of uniqueness of analytic continua- 
tion for a homogeneous system of partial differential equations in I&!” into the 
question of uniqueness of analytic continuation of C-R functions (functions 
satisfying the induced Cauchy-Riemann equations) on Mk C C”. Suppose 
then that f is a C-R function on ML such that f = 0 on some open subset U 
with u C Mk. We wish to discover under what conditions we can be assured 
that f vanishes identically on all of Mk. We shall find that this depends on the 
excess dimension, e, of the Levi algebra. If the number e is as large as possible 
at every point of M”, then we will show that we can extend f to a holomorphic 
function on some complex submanifold of C”, and then use the uniqueness of 
analytic continuation of holomorphic functions on this complex manifold to 
deduce that f = 0 on Mk. We will also show that if Mk has the property of 
uniqueness of analytic continuation for all C-R functions which are P, and if 
the Levi algebra has constant dimension on all of Mk, then the excess dimen- 
sion must be maximal at every point of M”. Our sufficiency result will be 
global on ilP, but our necessity result is essentially local in nature. The 
extensions of C-R functions on C-R manifolds has been considered in great 
generality in [I 11, and we shall need the results and methods of proof used 
there. 

We remark that the results in [l I] do not require Mh’ to be %F, but only 
sufficiently differentiable to enable the use of the Sobolev lemma. Similarly, 
our necessary and sufficient conditions will hold for GP C-R functions, for 
some m > 1 which can be determined. However, for the sake of simplicity 
we will assume that Mk and its C-R functions are V”. 

We will use some tools of several complex variables, particularly Lie 
brackets, Levi forms, and Levi algebras. These have been used before in the 
study of partial differential equations, most notably in the solvability work of 
Hormander, Nirenberg, and Treves. Indeed, Hormander’s condition (H) 
can be stated precisely in these terms (see [9, 201). It has been shown that a 
necessary condition for existence of distribution solutions for a large class of 
partial differential equations is that the first Lie bracket vanish. More recently, 
the use of successive Lie brackets has been exploited by Nirenberg and Treves 
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[15, 161, Treves [20], and Beals and Fefferman [2] to show sufficient 
conditions for solvability in a related class of partial differential equations, 
those satisfying condition (P) of Nirenberg and Treves. 

Finally, Strauss and Treves [I91 h ave shown uniqueness in the Cauchy 
problem for first-order linear partial differential equations satisfying con- 
dition (P). This result is related to ours in that the former implies uniqueness 
of analytic continuation in certain directions, whereas we get uniqueness 
of analytic continuation in all directions for the class of operators we 
consider. 

Section 2 of this paper will contain definitions and examples. In Sections 3 
and 4 we prove the principal sufficiency and necessity results, respectively. 
Section 5 contains other examples, results, and remarks. 

2. DEFINITIONS AND EXAMPLES 

We begin by stating formally the definition of uniqueness of analytic 
continuation. 

DEFINITION 2.1. Suppose we have a system of m( 21) first-order linear 
homogeneous partial differential equations in one unknown with complex- 
valued %‘E coefficients defined on an open connected subset A of W, k 2 2. 
This system has the property of unipeness of analytic continuation on A if 
every %7X solution on A which vanishes identically on any arbitrary open 
subset of 4 must vanish identically on all of A. 

In terms of several complex variables a more meaningful definition is the 
following. 

DEFINITION 2.1’. Let A@ be a real k-dimensional, connected, Vz manifold 
(possibly compact), which is a C-R submanifold of C”, with k and n 3 2. 
Then M” possesses the property of uniqueness of analytic continuation if 
every C-R function on Mk which vanishes identically on any arbitrary open 
subset of M” must vanish on all of Mk. 

The definitions of C-R manifolds and C-R functions will be given later. 
If the set A and the system in Definition 2.1 have the property that A can be 
embedded in some @” as a real k-dimensional, connected, C-R manifold Ml;, 
such that the system represents the induced Cauchy-Riemann operators on 
Mk, then Definition 2.1’ implies Definition 2.1. 

Let Mk be a real k-dimensional %a submanifold of C”, k, n > 2. For 
p E ML we denote by T,(Mk) the real tangent space to Mk at p. The set 
T(Mk) is the real tangent bundle to Mk with fiber Tp(Mk), and the complex 
structure on @” induces the almost complex tensor J: T(C) + T(C) 
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defined by multiplication by i = (--I)‘/“. We define the hohnnorphic tangent 
space to ilP at p by 

H,(Mk) = T,(Mk) n JT,(Mk). 

It is easily shown that max(K - n, 0) < dimcH,(Mk) < [k/2]. 
If dime HP(Mk) is a constant for every p E Mk, then Mk is a C-R manifold 

in P. These are the manifolds of interest to us because we can form the 
holomorphic tangent bundle H(Mk) with fiber H,(Mk) for C-R manifolds. 
If ML is a C-R manifold and dime H,(M”) = max(k - n, 0), then Mk is 
called a generic manifold. We have a totally real manifold Mk if dime 
H&M”) = 0 for every p E M”. However, the manifolds we shall consider are 
those C-R manifolds which are not totally real; i.e., 0 < dime H,(M”) < 
[k/2], where [ ] denotes the greatest integer function. 

Let x be a point in a C-R manifold Mk C @“, and let X, ,..., XT,, be a local 
basis for H(M”) at x. A P function f on Mk is a C-R function at x E Mk if 
Xjf(y) = O,forallynearx,j = l,..., m, where X9 , is the complex conjugate 
vector field to Xj . We then say that f satisfies the induced Cauchy-Riemann 
equations on Mk near x E Mk. If f is a C-R function at every x E Mk, then f is 
a C-R function on M”. We can also define a C-R function in the following 
way [17]. Let x E Mk and p1 ,..., p3 be real-valued %P functions defined on a 
neighborhood N of x in Q=” such that 

(4 dpl A - A dpj # 0 on ML n N, 

(ii) M”nN={xEN 1 Pl (x) =*** = Pj(X) = O}. 

Then there are n - m = i of the p’s, say p1 ,..., pi, such that 

ap1 A .** A api # 0 near x on Mk. 

Furthermore, a function f E 5P(llP) . is a C-R function near x if and only if, 
for any Jg %P(N) such that f 1 Mk = f, 

aj/i 8pp1 A *** A 2ppi = 0 

on Mk near x. 
Let f be a C-R function on a C-R manifold Mk such that f = 0 on some 

arbitrary open subset U of Mk with D C Ma. Our problem is to find necessary 
and sufficient conditions on Mk which insure that f = 0. We shall work 
through a series of examples which indicate when unique analytic continua- 
tion can be expected, prior to proving our main result. 

EXAMPLE 2.1. Let M3 C C2 be given by the equations 

Zl - Xl , 

z2 = ul + iv, = w1 , 
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with - 1 < xi < 1 and 1 w, 1 < 1. Here xi , z+ , zli are coordinates for M3, 
and z1 , .za are coordinates for C2. In this case we have that a basis section X 
of H(M3) is given by alaw,, by letting p1 = yi in the definition of C-R 
functions. Thus, a C-R function f on M3 must satisfy Xf = af /& = 0 at 
every point of Mk. Let U be the open subset of M3 such that -4 < x1 < 4 
and 1 wr 1 < 4. We define a C-R function f on M3 by 

f (3 ,%I = 0, -‘i < x1 < $, 

= exp(--l/(iq + 6J2), -l<$<-&, 

= exp(-l/(x1 - GJ2), Q <x, < 1. 

We have that f G 0 on U but not on all of M3, and M3 does not have the 
property of uniqueness of analytic continuation for C-R functions. 

In order to understand Example 2.1 better let us examine the Levi form on 
a C-R manifold M”. The Levi form is a map 

T(M”) @ @ 
L(Mk): H(Mk) -+ H(j)@) @ @ 

defined by 
Jw) = ~,[K n , 

where Y is a local cross section of H(Mk) defined near p such that Y, = u, 
[*, *] denotes the Lie bracket, and rr2, is the projection 

If the Levi form vanishes identically on Mk, we say that Mk is Lwi jut. 
In Example 2.1 we have that [X, X], = 0 for every p E Mk, and thus the 

Levi form vanishes identically on Mk. We shall see later that this vanishing is 
related to the fact that Mk does not have uniqueness of analytic continuation. 

EXAMPLE 2.2. Let M4 C C3 be given by the equations 

Zl = $1, 

z, = x2 + iwlkYiTl , 

x3 = 21, + iv, = w1 , 

with - 1 < x1 , x2 < 1 and 1 w1 1 < 1. Here x1 , x2 , zli , vi are coordinates 
on M4 and zr , z2 , x3 are coordinates for C3. In this case a basis section X 
of H(M4) is given by 
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Thus a C-R function for M4 must satisfy 

i af af Xf=--.-$-w--o 
2 aw, 1 az2 

on M4, as p1 = yr and pz = yz - w& . Let U be the open subset of M4 
satisfying -$ < x r , x2 < + and 1 wr 1 < 4. Define a C-R function f on 
M4 by 

f @I > 22 , z3) = 0, -$.<x1<& 

= exp(--l/(x1 + ij2), -1 <x, < -4 

= =A---l/(x1 - !d2>, Q <Xl < 1. 

We have that f = 0 on U but not on all of M4. Also, [X, X] = -(i/2)((a/&,) + 
(a/a%J}, implying that the Levi form does not vanish anywhere on M4. 
Thus we fail to have uniqueness of analytic continuation even though the 
Levi form vanishes nowhere. 

Before continuing with Example 2.2, we need to give some more definitions. 
The Levi algebra of M”, where Mk is a C-R manifold, is the Lie subalgebra of 
complex fields generated by sections of H(Mk) and ff(M”), with a(Mk) the 
conjugate bundle of H(Mk). The L evi algebra is denoted by L(M”), and we 
make the assumption that the dimension of L(Mk) is constant. Then L(Mk) 
is the algebra of sections of a vector bundle V, and VI H(M”) @ R(Mk). 
Let 

e = fiber dime 
V 

H(Mk) @ R(Mk) - 

This e is called the excess dimension of the Levi algebra. If Mkis a generic 
manifold, then 0 < e < 272 - K, and if Mk is a C-R manifold with 
I = dimcH,(M”) - max(k - 12, 0), then 0 < e < 2n - R - 21. The first 
statement in the preceding sentence is obvious, and the second statement 
will follow from a proof in the next section. For a detailed discussion of the 
Levi algebra and the excess dimension, see [4]. Also notice that if e > 1, 
then the Levi form must not vanish on ML. 

If we examine Example 2.2 again we find that [X, [X,X]] = 0 on all 
of M4. This implies that the excess dimension e of M4 is 1. Since M4 is a 
generic manifold, the maximal possible excess dimension is 2. We will show 
that the fact that M4 does not have the property of uniqueness of analytic 
continuation is related to the fact that its excess dimension is not maximal. 

EXAMPLE 2.3. Consider now the 3-manifold M3 contained in C2 given by 

21 = x, + iwl& , 

22 = u1 + iv, = w1 , 
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with -1 < x1 < 1 and j ru, 1 < 1. A basis section X of H(M3) is 
-(;/2)(a/aw,) + ~r(a/&z,). A C-R function f on M3 must satisfy If = 
(i/2)(afl&$) + w,(af /8Zl) = 0 on M3, as pi = y1 - w,@~. Since [X,X] = 
-(i/2)((a/&,) + (a/a~i)>, all C-R functions on M3 extend to holomorphic 
functions on a connected open subset W of @a which contains M3 in its 
boundary (see [8, 11, 12, 211). If a C-R functionf is zero in an open neigh- 
borhood U of the point (0, 0,O) in M3, then the holomorphic function on W 
which agrees with f on M3 can be shown to be zero on some open subset of W 
which is sufficiently close to the point (0, 0,O) in M3. By the uniqueness of 
analytic continuation for holomorphic functions we have that this holomorphic 
function is identically zero in W, hence on M3. Thus M3 has the property of 
uniqueness of analytic continuation. We will see that this occurs because the 
excess dimension e is identically one on M3, which is the maximum dimension 
possible. 

Indeed, we will prove in the next section that if MX: is a real K-dimensional, 
connected, C-R, Vz submanifold of C” such that the excess dimension of the 
Levi algebra on the manifold is maximal at every point, then Mli has the 
property of uniqueness of analytic continuation. 

3. C-R EXTENSION AND SUFFICIENCY RESULTS 

Let Mk be a C-R manifold and denote the C-R functions on Mk by 
CR(M”). If M is another C-R manifold with Mk contained in the boundary 
of M, we say that Mk is C-R extendible to M if the map CR(Mk) n CR(M) -+ 
CR(Mk) is onto. By this we mean that, given a C-R function f on Mk, there 
exists a C-R function f’ on M such that f’ 1 Mk = f. 

Let D be the open unit disc in the complex plane given by (5 E C: 1 5 1 < l}. 
If T is the Cartesian product of p compact intervals on the real line, then we 
define a q-real parameter family of analytic discs as a continuous map F: 
T x D -+ F such that F(t, iJ is holomorphic for 5 E D and for every fixed 
t E T. If for some t E T, F( t, [) is a constant, then we have a degenerate analytic 
disc corresponding to this value of t. In studying C-R extendibility these 
analytic discs prove to be very useful as the following known result indicates. 

THEOREM 3.1 [l I]. Let Mk be a real k-dimensional P submanifold of Cm. 
If Mk is C-R and if the Levi form does not vanish at some point p E Mk, then 
there exists a %‘* manifold n”i C 67 of real dimension (k + 1) such that all 
C-R functions on Mk extend to C-R functions on ii?. The integer m can be 
chosen from the set (m : 1 < m < oz}. 

We shall give an outline of the proof of this theorem in the generic case 
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only, Thus, we assume that Mk is a generic manifold and that Mk near p is 
given by the local equations 

xl = $1 + ih,(x, ,‘**> X2n-k w1 ,*-*, Wk-n), 

&-k = X2,x-k + ih,,-k(X1 ,..., X2,&-k , w, ,..., W&n), 
x2n-k+l = u1 + zv1 = wl , 

(3.1) 

x, = uk-n f iv&,, = w&n , 

where xi ,..., X2,&, u1 , z*i ,..., U&n, v&n are local coordinates for Mk 
vanishing at p, and .zl ,..., z, are coordinates on Cn also vanishing at p. The 
functions h, ,..., h2n-k are real-valued and vanish to order 2 at p. 

Using the Picard process of Bishop [3] and the Sobolev norm estimates of 
Wells [22], we can represent Mk near p in the form 

X1 = Xlm + ih,(x,” ,..., x;n-k , w1 ,..., w&n), 

&n-k = x;+k + f%2,g&lm ,..., x;,z-k , w1 ,..., W&n), 

x2n-k+l = w1 = reis, 

x2n-k+2 = u2 + iv2 = w2 , 
(3.2) 

% = uk-,, f iv&, = w&m,, . 

The functions x,“, j = l,..., 2n - k, are defined by x,” = s, - Thj(xlcc ,..., 
xZLk, re ie, w2 )...) w&, where Th, is the Hilbert transform of hl(xjm,..., 
xLk , re ie, w2 ,..., wk-,J taken with si ,..., sZlzMk , r, wa ,..., wk-,, fixed, where 
the sj replace our original functions Xj . Given any positive integer m, the 
functions 3cjoD can be taken to be F functions where defined. Then we have 
Mk near p given by a map F: 12m-k x I,, x L?D x 12k-2n-2 --f C” defined by 
Eqs. (3.2) with F = (Fl ,..., F,) = (.zi ,..., z,). We use the notation that 
I = [-1, 11 and Ia = [0, 11. The variables, or more appropriately, param- 
eters, are s, ,..., sZnpk in 12+k, r in I,, and u2, v2 ,..., U&a , vk-% in 12k-2+2. 
Applying the Cauchy integral formula to the functions Fl ,..., F, we obtain 
a map F’: P-k x I,, x D x I2k--8+-2 + Cn such that F’ 1 I2”-k x I,, x 

aD x 12k-2n-2 = F, and F’ is a holomorphic function in 5 E D for sr ,... , 
S2s-k, r? u2p v2 ,..., Uk-n , vUlcen fixed. Thus we have a (K - 1)-real param- 
eter family of analytic discs with boundaries in ML near p, with the point p 
being a degenerate disc. Since the Levi form does not vanish at p we may 
arbitrarily assume that a2hj( p)/aw, Ekf& # 0 for some j, 1 < j < 2n - k. 
It is shown in [4] that if the parameter sets have been chosen sufficiently 
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small, then the interior of the family of analytic discs fills up a generic mani- 
fold &7 of real dimension (K + 1). This manifold J? is connected and simply 
connected. 

Given a C-R function f on Mk there exists a C-R function f’ on A? such 
that f’ 1 Mk = f near p. The function f’ is obtained by applying the Cauchy 
integral formula to f on the boundary of each analytic disc. Proving that this 
function f’ is actually C-R on A? is indeed very difficult and depends on 
approximations off by holomorphic functions on certain “slices” of M”. 
We need not do this here. 

We are now ready to prove the main sufficiency result of this paper. 

THEOREM 3.2. Let Mk be a real k-dimensional, connected, C-R, Vx sub- 
manifold of en, and let the excess dimen.& of the Levi algebra be maximal at 
every point. If f is a C-R function on Mk such that f = 0 on U, U an open subset 
of ML with a C Mk:, then f = 0 on AP. 

Proof. We have only to show that f is identically zero in an open neighbor- 
hood in M”: of an arbitrary boundary point q of U. So we just assume that ML 
is this open neighborhood and U is an open subset of Mk with UC ML and 
with q in the boundary of U. 

The proof will be divided into two cases, the generic case and the C-R 
nongeneric case. So we first assume that Mk is a generic manifold, and that 
the excess dimension at every point is 2n - k, which is the real codimension 
of Mk in Cn. 

The proof is by induction on the integers 2n - k. If 2n - k = 0, then 
Mk is just an open set in @” and there is nothing to prove. So we assume that 
2n - k = 1. Given a positive integer m we can construct a (k - l)-param- 
eter family of analytic discs, which are defined by a 59 map, such that the 
boundaries of these discs fill up B, n Mk, where B, is an open ball in @” of 
radius E about q. Here the point q takes the place of our point p in Eqs. (3. I), 
and hence is a degenerate disc. Since Mk is a Vm manifold there exists an open 
set, which we take to be B, , such that each point q’ E B, has the property that 
there exists a (k - I)-parameter family of analytic discs, constructed with q’ as 
the degenerate disc, having their boundaries filling up B,,,(q’) r\ ICI”, where 
B,,,(q’) is an open ball in @Q with radius 42 and center q’. We choose a point 
p E Mk n U such that the distance from p to q in @” is less than ~14. So we can 
construct a (k - 1) parameter family of analytic discs at p, as in (3.1), such 
that these discs have $9’ structure and such that the point q is on the boundary 
of one of the discs. Any C-R function g on Mh’ extends to a C-R function g’ 
on the interior of these discs by Theorem 3.1. 

The assumption that 2n - k = 1 implies that k = 2n - 1. Thus the 
interior of the family of analytic discs, which we denote by A?, is simply an 
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open connected set in @* with Mk near p in its boundary. Since p E U and 
f z 0 in U, we find that the extended C-R function f’ is zero on those discs 
whose boundaries are sufficiently close to p. By the uniqueness of analytic 
continuation for holomorphic functions in Cn we have that f’ E 0 on M, 
hence f = 0 on the boundaries of the analytic discs. Here we have used the 
fact that a C-R function on an open set in @” is a holomorphic function in the 
set. Thus we have shown that f = 0 on a neighborhood of q in Mk. 

Now we assume the theorem is true if 2n - K < t - 1, and show that it is 
true for 2n - K = t, with t an integer greater than 1. We take p and q as 
above and suppose that we have constructed the analytic discs at p as before. 
All C-R functions on Mk extend to C-R functions on M by Theorem 3.1. 
The function f’ which extends f has the property that it is identically zero on 
an open subset of M. Since fi is a generic manifold and the excess dimension 
of M is t - 1 (see [4]), then by our inductive hypothesis f’ 2 0 on M. This 
implies that f = 0 in an open neighborhood of q in Mk, and we have com- 
pleted the proof in the generic case. 

Now we assume that Mk is a nongeneric, C-R manifold in 0. Let p E Mk 
and take 1 = dimcH,(Mk) - max(K - n, 0) > 0. Then the local equations 
for Mk near p are (in the case that K > n, with a similar argument if K < n) 

x1 = x1 + iQ$ ,*.., Xz(n-2)-k , Wl ,..., Wk--n+z), 

Zz(rr-z)-k = X-&a-.Z)-k + i&2(n-l)-&1 ,..., X2(n-Z)-k > w1 ,..., wk-n+Z) 

22(92-1)4+1 = u1 + iv, = w1 , 
(3.3) 

x,-1 = uk-&Z + ivk++Z = wk-12+1, 
&z-Z+1 = g&l Y.*., x2(n-Z)-k , wl I.**, wk-n+Z), 

% = gZ(xl >..*, X2(n--2)-k , w1 7.m.) Wk-n+Z), 

where x1 ,..., x~(~-~)-~ , u1 , zll ,..., u,+,,+r , v~-,+~ are local coordinates for ML 
vanishing at p, and ai ,..., .a, are coordinates on @n also vanishing at p. The 
functions h, ,..., h2(n--l)--B and the functions g, ,..., g, vanish to order 2 at p. 
It is shown in [lo] that Mk is a C-R manifold if and only if g, ,. .., g, are 
C-R functions on the associated generic manifold M,,” in @n-Z given by the 
equations 

x1 = x1 + i&(x1 ,..., XZ(n-2)-k , w1 ,..., Wk-n+Z)! 

Z2(n-Z)-k = X2(%-2)-k + ih2(n-Z)-k(X1 ,***I X2&4)-k , w1 ,*.*I Wk--n+Z), 

x2(+Z)-k+l = % + ivl = wl, 

(3 4) 

x,& = uk--n+2 + ivk--ncr = Wk--n+r . 
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It is true that the excess dimension for Mk is the same as that of Mok, implying 
that the maximum possible value for e is 2n - K - 21. 

Let us examine another generic manifold M’ in Cc” with local equations 
given by 

% = x1 + ih,(x, ,*.., X2(n--7)-k , w1 ,*a.> Wk--n+Z), 

X2(,+2)-k = x2(n-Z)-k + ih2(n-Z)-k(X1 ,***, X2(n-Z)-k 3 w1 ,***, Wk--n+Z), 

+(n-&k-l = u1 + "1 = w1, 

(3.5) 

%-Zfl = %-Z+l + igl,2(xl ,..., X2(n-Z)-k , "1 ,..., Wk--n+Z), 

% = by, + kZ,2(% ,..., X2h-7)--R , wl ,..., Wk--n+7)! 

wheregj = gj,r + igj,2 in Eqs. (3.3) forj = l,..., 1. Now we want to construct 
the boundaries for the analytic discs with respect to wr of the manifolds 
described in Eqs. (3.3), (3.4), and (3.5). These are 

zl = xlm + ih&l"9..., c&+7)& , WI ,..., wk-n+7), 

Z2(n-Z)-k = $h-Z)-k + ih2(n-7)-k(xlm~~~~? xi%+7)-k , w1 ,..., wk++Z), 

z2(n-7)-hbl = w1 = reie, 

z2(n-z)-k+2 = u2 + iv, = w2, 

(3.6) 

%-7 = Uk--n+Z -b ivk-e+7 = Wk--n+Z, 

=n-Z+l = g&lm,-, “%-7)-k 9 wl ,***, Wk--n+7), 

%z = gzc%” m *.*, ~~Z(n--z)-7c , w, ,***, Wk--n+z). 

for Mk, 

z* = x1 m + ihl(Xlm,-~, $h-7)-k , wl ,***, Wk--n+7), 

X2(+7)--l; = "&-z)-k + i~2(n-z)-k(~lrn,..., GL-7)-s 9 Wl ,***, 7+n+7), 

z~(~-~)-~+~ = w1 = reie, (3.7) 
%--I)--L+Z = u2 + iv2 = w2, 

x,-7 = Uk--n+Z + iv,+n+Z = Wk--n+7 , 
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for MO?+, and 

z1 = Xlrn + ihl(Xlrn,..., X&&-k, Wl ,***, Wk--IL+z), 

z2(n-Z)-k+l = w1 = reiO, 

Z2h-Z)-k+2 = u2 + iv2 = w2 , 

z,-z = uk.+ + ivk.-,& = wk-n , 

%-2+1 = %-z+1 - %.2(x10D,..., &&Z)-k 3 Wl >*-*, Wk.-n+z) 

+ igl,2hmv> cw-k > Wl ,**a, Wk--n+z), 

% = %I - m.2(Xlm,..., X%z-l)-k > Wl ,.'.Y f%--n+J 

+ igZ.2(x1m~-~~ X%z-Z)-k 9 wl ,***, wk-n+l), 

for M’. The discs with boundaries given in (3.6) form a (K + 1)-dimensional 
manifold n with Mk in its boundary, the discs with boundaries given in 
(3.7) form a (K + I)-dimensional generic manifold a0 with M,,k in its 
boundary, and the discs with boundaries given in (3.8) form a (k + I + l)- 
dimensional generic manifold il?. 

What we need to know is that A? is a C-R manifold in C=“, and that all 
C-R functions on ML extend to C-R functions on i@. The functions g, ,. .., g, 
are C-R on the generic manifold MO” and thus extend to C-R functions on 
A&, by Theorem 3.1. Thus we have that A? is a C-R manifold, since A&, is 
the associated generic manifold for A?!. In [l l] it is shown that all C-R 
functions on Mk extend to C-R functions on the manifold M’, and hence to 
C-R functions on A?‘, a generic manifold. But il?l is a submanifold of ii??‘, 
and hence all C-R functions on Mk extend to C-R functions on the C-R 
manifold i@. 

The proof in the C-R, nongeneric case is by induction as in the generic 
case. The only change is that if the maximal excess dimension is one, then A?! 
is a complex submanifold of @” of complex dimension n - 2 instead of an 
open set in Q=” as in the generic case. Thus we use the uniqueness of analytic 
continuation for complex manifolds instead of for open subsets of C”. Q.E.D. 

4. NECESSITY RESULTS 

The theorem we will prove later in this section is given as follows. 

THEOREM 4.1. Let Mk be a real k-dimensional, connected, C-R, VW sub- 
manifold of C?, and let the excess dimension of the Levi algebra be constant at 
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every point. If Mk has the property of uniqueness of analytic continuation for 
its C-R functions, then the excess dimension e must be maximal at every point 
of M”. 

This is the converse of Theorem 3.2. However, we cannot prove the 
necessity result above without making the following additional assumptions 
on the type of uniqueness of we are considering. 

A. If Mh has the property of uniqueness of analytic continuation, then 
so does any arbitrary connected open subset of Mk. In other words global 
uniqueness implies local uniqueness. 

B. If W and i@ are taken as in Section 3, and if il? v ML has uniqueness 
of analytic continuation, then so does any connected open subset 0 of i@. 
By i@ u ML having uniqueness of analytic continuation we mean that any 
function in VF(il?l u M”) which is C-R on both it? and MIC and which is zero 
on an arbitrary open set in l@, is identically zero on ii? u M”. 

Since our proof will be local in nature, we remark that assumption A is not 
needed if one is interested only in a local result. 

Let M1 be a real K-dimensional, connected, C-R, VP manifold embedded 
in C”. Let p be a point in Mk such that the Levi form on Mk does not vanish 
at p. As in Section 3, there exists a (K - 1)-parameter family of analytic discs 
with boundaries in Mk near p, such that the interiors of these discs fill up a 
connected C-R manifold &’ of real dimension (K + 1). In the following 
lemma we assume that Mk consists of the connected open neighborhood of p 
in AP filled up by the boundaries of the discs giving us a. 

LEMMA 4.2. If Mk has the property of uniqueness of analytic continuation, 
then ii? u dl” also has this property. 

Proof. Let f be a C-R function on both il? and M”, and let U be an open 
subset of @ with f = 0 on U. Since f is holomorphic on each of the analytic 
discs we have that f z 0 on the closure of those discs which intersect U. 
Hence there exists an open subset of Mk, which is contained in the boundaries 
of such discs, with f z 0 on this open set. Since Mk has the property of 
uniqueness of analytic continuation, it follows that f is identically zero on 
M”. By the maximum principle on the analytic discs, f = 0 on i@ u Mk, and 
the lemma is proved. Q.E.D. 

In the following lemma we assume that 2(n - I) - Iz 3 1, because if 
2(n - Z) - K = 0, then Mk is a complex manifold, which has the property 
of uniqueness of analytic continuation. Here 1 = drmcH,(Mk) - 
max(K - n, 0), as before. 



292 HUNT AND STRAUSS 

LEMMA 4.3. Let M” be a real k-dimensioml, connected, C-R, 5P sub- 
manifold of Cn such that the Levi form vanishes on an open subset of Mk. Then 
Mk does not have uniqueness of analytic continuation. 

Proof. Let 6 be a connected open subset of Mk described by Eqs. (3.3), 
and suppose the Levi form vanishes identically on 0. Then we need only 
show that 0 does not have uniqueness of analytic continuation, and then apply 
assumption (A). It follows from the work of Sommer and Wells (see [18, 
221) that 0 can by given by the equations 

Xl = 41 Y*.-Y t2(n-Z)-k 9 yl Y*-.> Yk-n+l), 

%z = 4t1 Y*-*> t2(,-Z)-k 7 3/1 Y..-Y Yk-n+d, 

(4.1) 

where t 1 ,..., t,(,-,)-, are real parameters, y1 ,..., Y~+,+~ are complex variables, 
and CX~ ,..., ~1, are holomorphic in y1 ,..., yk-n+a for t, ,..., t,(,-,)-, fixed. We 
assume that -1 < t, ,..., t2(n-L)-k < 1 and 1 yl I,..., 1 y&,$+2 1 < 1. 

The function defined by 

f (3 ,*.-, .%a) = 0, -3 < t, < $, 

= exp(-l/(4 + N2, -l<t,<-&, 

= exp(-- l/P, - W, 4 < t, < 1, 

is certainly C-R on 0 since it is holomorphic in the variables y1 ,..., yk-n+z. 
It is identically zero on an open subset of 0 without being zero on all of 0, 
and 0 does not have analytic continuation. Q.E.D. 

Now we are ready to prove the main necessity result of this paper, 
Theorem 4.1. 

Proof. We consider only the cases in which 2(n - 1) - k 3 1, and the 
proof will be by induction on 2(n - 1) - k = k - 2dimc:HJM”). If 
2(n - Z) - k = 1, the maximum number possible for the excess dimension 
is 1. If e = 0 on M”, then ML cannot have uniqueness of analytic continuation 
by Lemma 4.3, a contradiction. 

Let t be an integer greater than 1, and assume the statement of the theorem 
is true for 2(n - 2) - k = t - 1. We will show that if Mk is a manifold with 
the maximum possible excess dimension equal to t, and with Mk having 
uniqueness of analytic continuation, then e, the excess dimension of Y(M”), 
is t. By using analytic discs we can find the manifold ii? in Lemma 4.2 if there 
exists a point p E Mk where e > 0. However, if e = 0 for every point in M”, 
then we have a contradiction by using the fact that the Levi form 
vanishes on Mk if e vanishes on ML. Applying Lemma 4.2, i@ u Mk must 



UNIQUENESS OF ANALYTIC CONTINUATION 293 

have the property of uniqueness of analytic continuation. By assumption B, 
the manifold A? itself must also have this property. Using arguments as in [5] 
it can be shown that the excess dimension of P(m) is 1 less than the excess 
dimension of 6p(AP), and this is also true for the maximum possible excess 
dimensions of 2(&P) and Z(M). Thus the maximum possible excess dimen- 
sion of g(B) is t - 1. By our inductive hypothesis, the excess dimension of 
Y(B) must be t - 1, since A has uniqueness of analytic continuation. 
Hence the excess dimension e of 2(&P) is exactly t. Q.E.D. 

The following corollary implies that assumption B is not required if only 
real hypersurfaces in @” are considered. 

COROLLARY 4.4. Assumption B is not needed if k - 2 dimcH,(ilP) = 1 
for p E Mk. 

Proof. In this case the maximum number possible for e is 1, and if 
e = 0, we just use Lemma 4.3 and not Lemma 4.2. Q.E.D. 

5. OTHER EXAMPLES, RESULTS, AND REMARKS 

Thus far in this paper we have considered only those C-R manifolds Mk 
which have constant dimension for their Levi algebras at every point. It is 
important to ask if there exist manifolds M” C C” which do not have the 
property that their Levi algebras have constant dimension, but which still 
have uniqueness of analytic continuation for their C-R functions. If Mk is a 
hypersurface in @” (i.e., k = 2n - l), then the dimension of the Levi algebra 
is zero if and only if the Levi form vanishes, and the largest possible dimension 
is 1. In the case of the hypersurface, we will consider examples for which the 
Levi form vanishes at some points, but not at others. 

EXAMPLE 5.1. Consider the 3-manifold MS in C2 given by the equations 

z, = x1 + i(w,til)2, 

z2 = u1 + iv, = w1 , 

with --I < xi < 1 and I wr I < 1. We find X = -(i/2)(8/aw,) + 
2(w,@r2)( a/&r) is a basis section of H(M3) and 

[X, X] = -2iw,4 * {(apz,) + (a/azl)}. 

Thus the Levi form does not vanish on M3 except on that set of points where 
w, = 0. This set of points S forms a real l-dimensional submanifold of Ms. 
If U is any open subset of Ma, then U - S contains an open set in the con- 
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netted manifold M3 - S. If f is a C-R function on M3 with f = 0 on U, 
then applying Theorem 3.2 we find that f 3 0 on M3 - S. By continuity 
f = 0 on Mk, and we have the desired result. 

We doubt that this example can be generalized in the following sense. 
Let Mzn-l be a real hypersurface in C” such that the Levi form vanishes at 
most on a nowhere dense subset of M*+l; then Mzn-l has the property of 
uniqueness of analytic continuation. For the M3 in the above example, we 
notice that the Levi form vanishes only on a subset of dimension 1. If we have 
a manifold Mzs-l and a subset S of MPn-l on which the Levi form vanishes, 
and this set S disconnects M 2n-1, then finding necessary and sufficient 
conditions for Mzn-l to have uniqueness of analytic continuation seems to 
be very difficult. 

An interesting problem is illustrated by the following example. 

EXAMPLE 5.2. Let M3 be the grn submanifold of @s defined by the 
equations 

Zl = Xl + ihl(Xl , Wl), 

z2 = ul + iv, = w1 , 

with -1 < x1 < 1 and 1 wr 1 < 1, and where h, is the function given by 

( 
-1 

= exp 
r^2 - W+?iil 1 ’ 

i< IWlj < 1. 

Here r^ is fixed so that 0 < r^ < 1. We can put in the analytic discs by applying 
the Cauchy integral formula to the equations 

x1 = x1 + ih,(x, , TX+‘), 

z2 = u1 + iv, = w1 = reis, 

since no Picard process and Sobolev norm estimates are needed in this case 
(h, is a constant function of x1). These analytic discs fill up an open set Win 
UZ2 described by {(zi , .z~) E C2; ] z2 I < 1, yr - h(x, , wl) > O}. It can be 
shown that all holomorphic functions in a neighborhood of M3 in C2 extend 
to holomorphic functions on W, that all C-R functions on M3 can be approxi- 
mated uniformly on M3 by holomorphic functions in a neighborhood of M3, 
and hence all C-R functions on M3 extend to holomorphic functions on W 
(see [17, 211). If a C-R function on M3 vanishes on any open subset of M3, 
then it must vanish identically on all of M3 by arguments given in [7, 141. 
However, if U is an open subset of M3 on which the Levi form vanishes 
(for instance a sufficiently small open neighborhood of the origin), then U 
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does not have uniqueness of analytic continuation. Hence this manifold M3 
has the property of uniqueness of analytic continuation for its C-R functions, 
but not every open subset of Ms has this property. This example, which has a 
nonconstant dimension for its Levi algebra, verifies the following statement: 
Given a real hypersurface M sn-l C Cn which has uniqueness of analytic 
continuation, it is not always true that every open subset of M2+r has 
uniqueness of analytic continuation. 

For compact connected real hypersurfaces in C” we find that a remarkable 
phenomenon occurs. The following result is the basis for such a phenomenon 

(see PI). 

THEOREM 5.3. Let Q be a bounded open set in Cn, n 3 2, such that the 
complement of the closure of Q is connected and iX? is a V”; submanifold of C”. 
If u is a C-R function on &‘, then there exists a holomorphic function u’ in 9 
such that u’ j as = u. 

Using Theorem 5.3 we can prove the following global theorem. 

THEOREM 5.4. Let Q and X? be as in Theorem 4.1. If f is a C-R function 
on aQ which is identically zero on some open set in XJ then f = 0. 

Proof. The holomorphic extension f’ vanishes on an open subset of a 
and so is identically zero (see [7, 141). Q.E.D. 

REMARK 5.5. Harvey and Lawson [6] have proved a theorem analogous 
to Theorem 5.3, but with 82 replaced by a compact connected odd-dimen- 
sional qrn submanifold &I” C C” with dim&,(W) maximal for every p E Mk, 
and with Sz replaced by a (K + 1)-d imensional complex manifold with possible 
singularities. For such sets there is probably an analog to Theorem 5.4. 
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